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Abstract---Charnock's (1955) relation between interracial roughness and drag is utilized in order to 
determine these two quantities for fully-developed flows in tubes of arbitrary cross-section. 

1. INTRODUCTION 
Stratified, internal, horizontal flow has been the subject of numerous papers spanning many 
years and many fields of application; for a review of this subject the reader may consult such 
books as those by Wallis (1969), Butterworth & Hewitt (1979) and Yih (1980). 

The interracial drag and roughness are both quantities which are of intrinsic interest; they 
are obviously coupled, and the interracial drag can be the dominant component of the total 
frictional loss. When the interracial drag increases to sufficiently high values the flow 
experiences a transition to 'slug' flow (see, for example, the first two books mentioned above), 
and the commonly used correlation quantifying the conditions at this transition is that proposed 
by Wallis & Dobson (1973). 

The present paper is aimed primarily at a determination of the interfacial drag and 
roughness, and it begins by invoking the classical relation between mean and friction velocities 
in fully-rough channel flow. The roughness itself is an unknown, of course, and at this stage the 
analysis utilises a modified form of an algebraic relation proposed by Charnock (1955) and 
widely used in the oceangraphy literature. Geophysical fluid-dynamics is often very different 
in character to typical internal flows encountered in engineering applications, but some 
similarities do exist, and in fact many of the papers published in the oceanographic literature 
refer to experiments conducted in the laboratory. 

Be that as it may, it transpires that the algebraic relation obtained thereby possesses 
solutions only when the mean gas velocity lies below a certain maximum. It is tempting to 
interpret this critical condition as slug transition, and indeed it turns out that the functional 
dependence (at transition) of the mean gas velocity on the channel geometry, when confined to 
rectangular cross-sections, is identical to that of Wailis-Dobson. A direct comparison between 
the two correlations then fixes an unknown parameter introduced earlier into Charnock's 
relation; this ensures that the present theory predicts transition correctly and, moreover, 
quantifies the interracial drag and roughness below transition, for general tube cross-sections. 

2. THEORY 

The analysis is begun by introducing the classical relation between mean and friction 
velocities (Goldstein 1965, Schlichting 1960) for fully-rough internal flow: 

ucJu, = 5.75 Iogl0 (RIe) + 4.73 [2.1] 

Uo, u, are the mean and friction velocities, R is the mean hydraulic radius 2AIC (A and C are 
the cross-sectional area and perimeter respectively), and ¢ is the RMS roughness scale (which is 
normally uniformly distributed around the perimeter). 
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Charnock (1955) employed dimensional arguments, subsequently supported by theoretical 
considerations (Phillips 1977), to propose that ~ ~ u,2/g, where g is the gravitational acceleration. 
Numerous laboratory and field experiments, published in the oceanography literature (e.g. Wu 
1968 and Phillips 1977), have indicated that: 

= 0.33 u~2/g [2.21 

provided u,->0.5 m s e c  t. There is some disagreement in the literature about the value of the 
constant of proportionality in [2.2], and Hsu (1974) has explained the discrepancies in terms of 
variations of mean wave slopes from experiment to experiment. However, there is no need to 
be precise at this stage of the analysis because of the introduction of a disposable constant 
below. 

It should be mentioned that the role of the gravitational acceleration g is expected to be 
represented by the buoyancy term (pL - Pc)g, and since the mean interfacial stress is pc;u, 2, one 
may anticipate that e = pOu,2/g(pL -PO). 

A similar approach is followed in this paper. However, it is necessary to account for the fact 
that the roughness is not uniformly distributed around the channel gas-phase perimeter and that 
the interface between the liquid and the gas is mobile, so Charnock's relation is modified to: 

e, = 0.33~u?/g; ~ = rll/c [2.31 

where ~, is an "effective" roughness, 1 is the length of the interface in the cross-sectional plane 
(see figure 1), and r/is a constant yet to be determined. 

Substitution of [2.3] in [2.1] then yields an algebraic relation between u, and u~;: 

/20.1 V"] V2 = U~u, = 5.75 Iog,o ~ .~u----~r-]; gR [2.4] 

What is of particular interest is the fact that, for a given value of ~, there is a maximum value of 
uc, denoted by (Uo)r, beyond which no solutions of this algebraic equation exist (see figure 2). 
When uo < (Uc)r two solutions exist, identified by A and B in the figure; however, since the 
stress should increase with uc, point B is physically meaningless, and A is the relevant solution. 
As uo is increased and reaches the value (uo)r, the two points coalesce, and the two curves 
representing the left and right-hand sides of [2.4] are tangential at point C. Alternatively, if [2.4] 
is regarded as an expression of uo as a function of u,, then the transition corresponds to 

Figure 1. A typical cross-section. 
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Figure 2. A sketch of the terms in [2.4], as functions of the friction velocity. 

duddu, = 0. By differentiating [2.4] with respect to u, and substituting back into that equation, 
one immediately finds that: 

(Uc,/U,)T = 5.0 [2.5a] 

( ~ ) r  1.64 u6 (v)- - ~ .  [2.5b1 

Generally, 

v {2Ag~ ''2 
= ~ - W :  " [2.6] 

This expression is particularised to a flow in a rectangular channel in order to perform the 
comparison with the Wallis-Dobson stratified-slug transition correlation (Wallis & Dobson 
1973, Butterworth & Hewitt 1977): 
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V _ (2gh]'" (rectangular channel). 12.71 

Here h is the height of the gas-phase channel. Now the Wallis-Dobson correlation is, in the 
present notation, 

\ Pc, /g J 
[2.81 

where PL and Pc are the liquid and gas densities respectively. Comparing [2.5] and [2.8] then 
leads to: 

545pc, 
n = ~ .  [2.9] 

PL - -  PG 

For air flowing over water under atmospheric conditions, rl---0.67, and for the purpose of 
illustration these results are presented in figure 3 as curves of uJ V vs ud V, with llC having the 
values 0.1, 0.25 and 0.45. The dotted line u, = 0.2uo represents the transition locus, at which the 
curves acquire infinite slope. 

The results can be collapsed onto a single universal curve by employing the following 
coordinates: 

__( ¢ 
~ic,=\20.1/  -V' fi" \2--~.I! V [2.10] 

In terms of these variables, [2.4] reads 

~ = -5 t i ,  In fi, [2.11] 

and the stratified-slug transition corresponds to 

u, T = e -~ = 0.368, '~c,r > 5 e -I = 1.839. [2.12] 

Parts of the analysis have, admittedly, been biased towards rectangular ducts, but the following 
points should be borne in mind: (i) [2.4], [2.5], [2.11] and [2.12] are quite general and are 
expected to apply to conduits of arbitrary cross-section. (ii) In this paper it is suggested that 
[2.9] may be applied to non-rectangular ducts. (iii) If [2.9] is found to fail for a particular 
geometry, it can simply be modified in precisely the manner utilized here, by comparing 
[2.5b] with experimental slug-transition data. In principle, it is possible to determine 77 with 
measurements at a single void fraction, since the channel geometry is embodied in the definition 
of ~ and in [2.6]. 

Equation [2.11] has been plotted in figure 4, together with the curve 

fi-/fier = 1 - [1 - (fiJt~Gr)2] In [2.13] 

which is a more convenient, explicit relation offering reasonable accuracy at conditions not far 
removed from transition. 

In terms of the customary skin-friction coefficient, C I = 2(uduc,) 2, if follows from [2.5a] that 
at transition C! = (Ct)r = 0.08. It should be emphasized that the present analysis only accounts 
for the contribution of the interface to the frictional losses, although that contribution is often 
the dominant one. There is an interesting similarity between figure 3 and figure 5 presented by 
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Figure 3. Friction velocity versus mean gas velocity, a = 0.66. 
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Wallis & Dobson (1973) in which the gas velocity was plotted against channel slope needed to 
maintain uniform liquid depth (the channel slope was proportional to the interfacial drag). 
Unfortunately, it is not possible to execute a direct comparison between the current predictions 
and Wallis and Dobson's results, because they did not publish sufficient information. This may 
be seen from the following argument: Considering planar, fully-developed, stratified flow, the 
momentum equation may be integrated once to describe the customary linear shear stress 
distributions in the two fluids and these in turn yield the following expressions for the stresses 
at the floor and the roof of the channel respectively: 

rB=~l - hL(dd-~x + Pt.g sin O) [2.14a] 

rr = rt + h6(-~xx + peg sin 0) [2.14b] 

Here ~'1 is the interfacial stress, h is the depth of the respective fluid, dp/dx is the pressure 
gradient, and 0 is the channel's angle of inclination to the horizontal, rl may be inferred in an 
experiment if dp/dx and either r8 or ~r are measured. Alternatively, dp/dx may be eliminated 
to relate rl to zs and ¢r exclusively: 

(hL -I + hG-t)¢1 = (Pt - Pa)g sin 0 + hL-1¢8 + ha-1 l"r. [2.14c] 

There is little point in employing one of the empirical correlations for pressure drops because 
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the inherent errors would only serve to cast doubt on the validation, and experimental tests of 
the present theory must await the appearance of the additional quantities delineated above. 

Expressions [2.9] diverges as Pc ~pL, and the present theory will probably break down 
under such circumstances because gravitational influences will become inappropriate vis-A-vis 
Charnock's relation. 

As it stands, the analysis assumes zero liquid flow, and non-zero liquid flows are considered 
by replacing u6 by uc - uL; the reader is referred to the pertinent comments by Wallis & Dobson 
(1973). 

CONCLUSIONS 
Charnock's (1955) relationship, modified to account for boundary effects in internal flows, 

has been used in conjunction with the classical expression for the friction in fully-rough 
channels in order to predict the interracial shear stress and roughness under fully-developed 
conditions. 

A mathematical "breakdown" has been shown to correspond to the Wallis-Dobson (1973) 
slug transition correlation, with the aid of which an unknown parameter, introduced earlier in 
the analysis, is determined in terms of the two fluid densities. The interracial friction coefficient 
is predicted to have a value of about 0.08 at transition. 
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